uneigentlich — ụn|ei|gent|lich I 〈Adj.〉 nicht wirklich II 〈Adv.; umg.〉 wenn man es nicht so genau betrachtet ● „Eigentlich habe ich keine Lust dazu ...“ „Aber uneigentlich könntest du doch ...“ * * * 1ụn|ei|gent|lich <Adj.>: 1. (bes. bildungsspr., Philos … Universal-Lexikon
uneigentlich — uneigentlichadv entgegenderursprünglichenAbsicht.»Eigentlich«hatmandiesunddastunwollen;aber»uneigentlich«hatmanesunterlassen.1920ff … Wörterbuch der deutschen Umgangssprache
uneigentlich — ụn|ei|gent|lich … Die deutsche Rechtschreibung
Bestimmtes Integral — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der … Deutsch Wikipedia
Dreifachintegral — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der … Deutsch Wikipedia
Hüllenintegral — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der … Deutsch Wikipedia
Integrable Funktion — Das Lebesgue Integral (nach Henri Léon Lebesgue) ist der Integralbegriff der modernen Mathematik, der die Berechnung von Integralen in beliebigen Maßräumen ermöglicht. Im Fall der reellen Zahlen mit dem Lebesgue Maß stellt das Lebesgue Integral… … Deutsch Wikipedia
Integralrechnung — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der … Deutsch Wikipedia
Integrand — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der … Deutsch Wikipedia
Integrationsbereich — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der … Deutsch Wikipedia